1. 首页
  2. 学习方法

砀山县铁路中学2024-2023学年七年级下学期期末教学质量监测数学

砀山县铁路中学2024-2023学年七年级下学期期末教学质量监测数学试卷答案,我们目前收集并整理关于砀山县铁路中学2024-2023学年七年级下学期期末教学质量监测数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

砀山县铁路中学2024-2023学年七年级下学期期末教学质量监测数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

12.已知函数f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=$\frac{π}{4}$对称.
(1)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求实数m的最大值和最小值
(2)若当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求a的取值范围.

分析(1)运用数量积的坐标计算公式,辅助角公式化简函数式,再求最小正周期和单调区间;
(2)根据自变量的范围得出函数的最值,求出a,再结合函数图象求k的范围.

解答解:(1)f(x)=2cos2x+sin2x+a
=cos2x+sin2x+a+1=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+a+1,
该函数的最小正周期为:π,
令2x+$\frac{π}{4}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],解得x∈[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$];
所以,f(x)的单调增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$](k∈Z);
(2)当x∈[0,$\frac{3π}{8}$]时,2x+$\frac{π}{4}$∈[$\frac{π}{4}$,π],
此时,sin(2x+$\frac{π}{4}$)∈[0,1],
所以,f(x)max=$\sqrt{2}$+a+1=$\sqrt{2}$,解得a=-1,
因此,f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
要使f(x)=k在x∈[0,$\frac{3π}{8}$]内恰有两解,
结合正弦函数图象知,k∈[f(0),f($\frac{π}{8}$)),即k∈[1,$\sqrt{2}$),
故实数k的取值范围为[1,$\sqrt{2}$).

点评本题主要考查了向量的数量积,三角函数恒等变换,三角函数的图象与性质,以及运用函数图象解决根的个数问题,属于中档题.

砀山县铁路中学2024-2023学年七年级下学期期末教学质量监测数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/104123.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息