1. 首页
  2. 学习方法

辽宁省2024~2023学年第一学期高一期末质量检测(23048A)数学

辽宁省2024~2023学年第一学期高一期末质量检测(23048A)数学试卷答案,我们目前收集并整理关于辽宁省2024~2023学年第一学期高一期末质量检测(23048A)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

辽宁省2024~2023学年第一学期高一期末质量检测(23048A)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

6.已知函数f(x)是定义在R上的奇函数,f(x+2)=f(x),当x∈(0,1]时,f(x)=1-2|x-$\frac{1}{2}$|,则函数g(x)=f[f(x)]-$\frac{4}{3}$x在区间[-2,2]内不同的零点个数是(  )

A. 5 B. 6 C. 7 D. 9

分析(1)由数列的通项和前n项和的关系,结合等比数列的定义和通项公式,即可得到所求;
(2)bn-bn-1=log33n-1=n-1(n≥2),由数列的恒等式bn=b1+(b2-b1)+(b3-b2)+…(bn-bn-1),由等差数列的求和公式,计算即可得到所求;
(3)nan=n•3n-1,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简即可得到所求和.

解答解:(1)an+1=2Sn+1,可得a2=2a1+1=3,
a3=2(a1+a2)+1=2×(1+3)+1=9,
当n>1时,an=2Sn-1+1,
相减可得an+1-an=2(Sn-Sn-1)=2an
即an+1=3an,因为$\frac{{a}_{2}}{{a}_{1}}$=3,则an+1=3an
所以{an}是以1为首项,3为公比的等比数列,
则an=3n-1
(2)数列{bn}满足b1=0,bn-bn-1=log3an(n≥2),
即有bn-bn-1=log33n-1=n-1(n≥2),
bn=b1+(b2-b1)+(b3-b2)+…(bn-bn-1
=0+1+2+…+(n-1)=$\frac{n(n-1)}{2}$;
显然b1=0符合上式,所以bn=$\frac{n(n-1)}{2}$;
(3)nan=n•3n-1
前n项和Tn=1•30+2•31+3•32+…+n•3n-1
3Tn=1•31+2•32+3•33+…+n•3n
两式相减可得,-2Tn=1+31+32+…+3n-1-n•3n
=$\frac{1-{3}^{n}}{1-3}$-n•3n
化简可得,Tn=$\frac{(2n-1)•{3}^{n}}{4}$+$\frac{1}{4}$.

点评本题考查数列的通项的求法,注意运用数列的通项和前n项和的关系,以及数列的恒等式,考查数列的求和方法:错位相减法,考查运算能力,属于中档题.

辽宁省2024~2023学年第一学期高一期末质量检测(23048A)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/38737.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息