1. 首页
  2. 学习方法

耀正文化(湖南四大名校联合编审)·2023届名校名师模拟卷(六)6数学

耀正文化(湖南四大名校联合编审)·2023届名校名师模拟卷(六)6数学试卷答案,我们目前收集并整理关于耀正文化(湖南四大名校联合编审)·2023届名校名师模拟卷(六)6数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

耀正文化(湖南四大名校联合编审)·2023届名校名师模拟卷(六)6数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

20.已知$\overrightarrow a=(m+1,0,2m),\overrightarrow b=(6,2n-1,2),若\overrightarrow a∥\overrightarrow b$,则m与n的值分别为(  )

A. $\frac{1}{5}$,$\frac{1}{2}$ B. -$\frac{1}{5}$,-$\frac{1}{2}$ C. 5,2 D. -5,-2

分析由四棱锥的体积为9可得到底面边长a与高h的关系,作出图形,则球心O在棱锥的高或高的延长线上,分两种情况根据勾股定理列出方程,解出球的半径R的表达式,将问题转化为求R何时取得最小值的问题.

解答解:设底面边长AB=a,棱锥的高SM=h,
∵V棱锥S-ABCD=$\frac{1}{3}$•a2•h=9,
∴a2=$\frac{27}{h}$,
∵正四棱锥内接于球O,
∴O在直线SM上,设球O半径为R,
(1)若O在线段SM上,如图一,则OM=SM-SO=h-R,
(2)若O在在线段SM的延长线上,如图二,则OM=SO-SM=R-h,
∵SM⊥平面ABCD,
∴△OMB是直角三角形,
∴OM2+MB2=OB2
∵OB=R,MB=$\frac{1}{2}$BD=$\frac{\sqrt{2}}{2}$a,
∴(h-R)2+$\frac{{a}^{2}}{2}$=R2,或(R-h)2+$\frac{{a}^{2}}{2}$=R2
∴2hR=h2+$\frac{{a}^{2}}{2}$,
即R=$\frac{h}{2}$+$\frac{{a}^{2}}{4h}$=$\frac{h}{2}$+$\frac{27}{4{h}^{2}}$=$\frac{h}{4}+\frac{h}{4}+\frac{27}{4{h}^{2}}$≥3$\root{3}{\frac{27}{64}}$=$\frac{9}{4}$.
当且仅当$\frac{h}{4}$=$\frac{27}{4{h}^{2}}$取等号,
即h=3时R取得最小值$\frac{9}{4}$.
故选:A.

点评本题考查了正棱锥与其外接球的结构特征,寻找球的半径与棱锥底面边长的关系是解题关键.

耀正文化(湖南四大名校联合编审)·2023届名校名师模拟卷(六)6数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/48232.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息