1. 首页
  2. 学习方法

2024-023学年安徽省八年级下学期阶段性质量监测(六)数学

2024-023学年安徽省八年级下学期阶段性质量监测(六)数学试卷答案,我们目前收集并整理关于2024-023学年安徽省八年级下学期阶段性质量监测(六)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2024-023学年安徽省八年级下学期阶段性质量监测(六)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

1.O为坐标原点,直线l与圆x2+y2=2相切.
(1)若直线l分别与x、y轴正半轴交于A、B两点,求△AOB面积的最小值及面积取得最小值时的直线l的方程.
(2)设直线l交椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1于P、Q两点,M为PQ的中点,求|OM|的取值范围.

分析(1)运用数列极限公式$\underset{lim}{n→∞}$$\frac{1}{{2}^{n-1}}$=0;(2)运用等比数列的求和公式求得Sn,再取极限,即可得到所求值.

解答解:由an=$\left\{\begin{array}{l}{\frac{1}{n(n+1)},1≤n≤3}\\{\frac{1}{{2}^{n-1}}.n≥4}\end{array}\right.$,
(1)$\underset{lim}{n→∞}{a}_{n}$=$\underset{lim}{n→∞}$$\frac{1}{{2}^{n-1}}$=0;
(2)Sn为前n项的和,
即有Sn=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{8}$+$\frac{1}{16}$+…+$\frac{1}{{2}^{n-1}}$
=$\frac{3}{4}$+$\frac{\frac{1}{8}(1-\frac{1}{{2}^{n-3}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n-1}}$,
即有$\underset{lim}{n→∞}{S}_{n}$=$\underset{lim}{n→∞}$(1-$\frac{1}{{2}^{n-1}}$)
=1-$\underset{lim}{n→∞}$$\frac{1}{{2}^{n-1}}$=1-0=1.

点评本题考查等比数列的通项和求和公式的运用,考查数列极限的求法,考查运算能力,属于中档题.

2024-023学年安徽省八年级下学期阶段性质量监测(六)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/65556.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息