1. 首页
  2. 学习方法

湖南省2023届高三一起考大联考(5月)数学

湖南省2023届高三一起考大联考(5月)数学试卷答案,我们目前收集并整理关于湖南省2023届高三一起考大联考(5月)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

湖南省2023届高三一起考大联考(5月)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

10.已知θ∈R,且sinθ-2cosθ=$\sqrt{5}$,则tan2θ=(  )

A. $\frac{4}{3}$ B. $\frac{3}{4}$ C. -$\frac{3}{4}$ D. -$\frac{4}{3}$

分析(1)先利用将次公式和两角和的正弦公式将f(x)化简得f(x)=2sin(2x+$\frac{π}{6}$)+1,令2kπ$+\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$解出单调递减期间;
(2)令g(x1)+a+3在[1,3]上的最小值大于f(x2)在区间$[0,\frac{π}{2}]$上的最大值即可.

解答解:(Ⅰ)$f(x)=cos2x+1+\sqrt{3}sin2x=2sin(2x+\frac{π}{6})+1$.
当$2kπ+\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,
即$kπ+\frac{π}{6}≤x≤kπ+\frac{2π}{3}$,k∈Z时,函数f(x)单调递减,
所以函数f(x)的单调递减区间为$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]k∈Z$.
(Ⅱ)对任意${x_1}∈[1,3],{x_2}∈[0,\frac{π}{2}]$,要使不等式g(x1)+a+3>f(x2)恒成立,
只需g(x1)+a+3在[1,3]上的最小值大于f(x2)在区间$[0,\frac{π}{2}]$上的最大值.
当$x∈[{0\;,\frac{π}{2}}]$时,有 $2x+\frac{π}{6}∈[{\frac{π}{6}\;,\frac{7π}{6}}]$,
∴当$2x+\frac{π}{6}=\frac{π}{2}$即$x=\frac{π}{6}$时,$sin(2x+\frac{π}{6})$有最大值1,f(x)有最大值3.
所以当${x_2}∈[0,\frac{π}{2}]$时,f(x2)的最大值为3.
又由g(x)=xe-x得   g′(x)=e-x-xe-x=(1-x)e-x,当1≤x≤3时,g’(x)≤0.
∴g(x)在区间[1,3]上是减函数,当x1∈[1,3]时,g(x1)有最小值$g(3)=\frac{3}{{{{e}^3}}}$.
所以g(x1)+a+3的最小值为$\frac{3}{{{{e}^3}}}+a+3$.
令$\frac{3}{{{{e}^3}}}+a+3$>3得  $a>-\frac{3}{{{{e}^3}}}$,所以实数a的取值范围是$(-\frac{3}{{{{e}^3}}},+∞)$.

点评本题考查了三角函数的单调区间和函数恒成立问题,将问题转化为函数的最值问题是关键.

湖南省2023届高三一起考大联考(5月)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/86273.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息