安徽省2024-2023学年八年级教学质量检测(七)数学试卷答案,我们目前收集并整理关于安徽省2024-2023学年八年级教学质量检测(七)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
安徽省2024-2023学年八年级教学质量检测(七)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
8.下列不等式中成立的是( )
A. | 若a>b,则ac2>bc2 | B. | 若a>b,则a2>b2 | ||
C. | 若a>b>0,则$\frac{b}{a}$>$\frac{b+1}{a+1}$ | D. | 若a>b>0,则a+$\frac{1}{b}$>b+$\frac{1}{a}$ |
分析(1)由已知ρ2=ρ(4cosθ+2sinθ)=4ρcosθ+2ρsinθ,利用ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出曲线C的直角坐标方程及它表示的曲线.
(2)由已知得直线l过定点(2,1),也就是过圆(x-2)2+(y-1)2=5的圆心,由此能证明|PQ|为定值.
解答解:(1)∵ρ=4cos θ+2sin θ,
∴ρ2=ρ(4cos θ+2sin θ)=4ρcos θ+2ρsin θ,
由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,得x2+y2=4x+2y,
∴曲线C的直角坐标方程为(x-2)2+(y-1)2=5,
它表示以(2,1)为圆心,$\sqrt{5}$为半径的圆.(5分)
证明:(2)∵直线l的参数方程为$\left\{\begin{array}{l}{x=2+tcosα}\\{y=1+tsinα}\end{array}\right.$,(t为参数),
∴直线l过定点(2,1),也就是过圆(x-2)2+(y-1)2=5的圆心,
∴|PQ|=2$\sqrt{5}$,为定值.
点评本题考查曲线的直角坐标方程的求法,考查线段为定值的证明,解题时要认真审题,注意极坐标方程、参数方程、直角坐标方程转化公式的合理运用.
安徽省2024-2023学年八年级教学质量检测(七)数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/87877.html