玉溪市2024-2023学年春季学期期末高二年级教学质量检测数学试卷答案,我们目前收集并整理关于玉溪市2024-2023学年春季学期期末高二年级教学质量检测数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
玉溪市2024-2023学年春季学期期末高二年级教学质量检测数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
1.a是不为1的有理数,我们把$\frac{1}{1-a}$称为a的差倒数,如:2的差倒数是$\frac{1}{1-2}$=-1,-2的差倒数为$\frac{1}{1-(-2)}$=$\frac{1}{3}$.已知a1=-$\frac{1}{3}$,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.根据你对差倒数的理解完成下面问题:
(1)a2=$\frac{3}{4}$,a3=4,a4=-$\frac{1}{3}$;
(2)通过(1)中的结果计算a2013的值.
分析由已知可得:2θ-$\frac{π}{6}$∈[-$\frac{π}{2}$,$\frac{π}{2}$],结合二倍角公式和和差角公式,可已知化为sin(2θ-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,进而利用同角三角函数的基本关系公式,求出cos(2θ-$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,代入cos2θ=cos[(2θ-$\frac{π}{6}$)+$\frac{π}{6}$]可得答案.
解答解:∵θ∈[-$\frac{π}{6}$,$\frac{π}{3}$],
∴2θ-$\frac{π}{6}$∈[-$\frac{π}{2}$,$\frac{π}{2}$],
又∵$\sqrt{3}$sinθcosθ-$\frac{1}{2}$cos2θ=$\frac{\sqrt{3}}{2}$sin2θ-$\frac{1}{2}$cos2θ=sin(2θ-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,
∴cos(2θ-$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,
∴cos2θ=cos[(2θ-$\frac{π}{6}$)+$\frac{π}{6}$]=cos(2θ-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(2θ-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{\sqrt{6}}{3}$×$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{3}$×$\frac{1}{2}$=$\frac{3\sqrt{2}-\sqrt{3}}{6}$,
故选:A
点评本题考查的知识点是二倍角公式和和差角公式,同角三角函数的基本关系公式,难度中档.
玉溪市2024-2023学年春季学期期末高二年级教学质量检测数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/105882.html